Lasers May Hold the Key to Composite Bonding

Joining carbon fibre composites to aluminium and other multi-material high-end products could become less expensive and the joints more robust thanks to a new method that harnesses laser technology.

The process, developed by a team led by Adrian Sabau of the Department of Energy’s Oak Ridge National Laboratory, could replace the practice of preparing the surface of the materials by hand using abrasive pads, grit blasting and environmentally harmful solvents. Using a laser to remove layers of material from surfaces prior to bonding improves the performance of the joints and provides a path toward automation for high-volume use.

Our technique is vastly superior to the conventional surface preparation methods, combined with the potentially dramatic reduction in the cost of carbon fibre polymer composites, this represents an important step toward increasing the use of this lightweight high-strength material in automobiles, which could reduce the weight of cars and trucks by 750 pounds.

The surface treatment of aluminium and carbon fibre polymer composite is a critical step in the adhesive joining process, which directly affects the quality of bonded joints. Aluminium surfaces typically contain oils and other contaminants from production rolling operations while carbon fibre surfaces often contain mould releases.

“These surface contaminants affect surface energies and the quality of adhesion, so it is critical that they are removed, adding that the laser also penetrates into the top resin layer, leaving individual carbon fibres exposed for direct bonding to the adhesive and increasing the surface area for better adhesion.

Test results support Sabau’s optimism as single-lap shear joint specimens showed strength, maximum load and displacement at maximum load were increased by 15%, 16% and 100%, respectively, over those measured for the baseline joints. Also, joints made with laser-structured surfaces can absorb approximately 200 percent more energy than the conventionally prepared baseline joints, researchers reported.

Sabau noted that the process also doubles the energy absorption in the joints, which has implications for crash safety and potential use in armour for people and vehicles. Tim Skszek of Magna International a project partner said;

The results are most encouraging, enabling the automated processing of a multi-material carbon fibre-aluminium joint. With this work, we were able to focus on addressing the gaps in technology and commercial use, and we look forward to applying these findings to products.